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Abstract 
Graphically-defined irregular curves are found in various engineering problems. To use 

such a curve in the design process, it is replaced (approximated) by an analytical function. 
The article considers traditional approach when a graphically-defined curve is approximated 
by cubic Bezier segments (with unit weight coefficients) connected to each other by the order 
of smoothness G2 (with a continuous change in curvature). It is shown that for planes, the 
well-known algebraic condition of a G2-smooth connection of Bezier segments reduces to the 
solution of an ordinary quadratic equation. An algorithm is obtained that can be used to 
control the shape of a planar composite Bezier curve without violating the specified order of 
smoothness. The algorithm differs in that it allows for variation of both directions of tangents 
at the junction points and the radii of curvature at the end points of the composite curve. In 
particular, the algorithm can be used to find the equation of a planar cubic Bezier segment 
defined by tangents and radii of curvature at their end points. The calculation of the 
coordinates of the control points of such a segment is reduced to solving a system of two 
quadratic equations or constructing the intersection points of two parabolas.  

The problem of G2-smooth conjugation of two straight lines, a straight line and a circle, 
and two circles (with predetermined conjugation points) is considered. An example of 
construction of a G2-smooth closed contour touching given straight lines and having a given 
curvature at the closing point is presented. An experiment on the approximation of a physical 
spline of a composite cubic Bezier curve is performed. The approximation error was less than 
2%.  

Keywords: composite cubic Bezier curve, Bernstein polynomial, physical spline, 
curvature, approximation, smoothness, degree of freedom.  

 

1. Introduction 
Graphically defined irregular curves are found in various engineering problems. For 

example, an undulating curve drawn arbitrarily by an architect can become the basis of a 
project (Fig. 1). For the practical application of such a curve, it is replaced (with a certain 
degree of accuracy) by a regular curve. 

 

 
Fig. 1. Modern airport 
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In modern CAD systems, the irregular curve is approximated by the NURBS curve, which 
has become a standard tool for computer modeling [1]. This approach may not always satisfy 
the designer. The NURBS curve, despite its universality, does not take into account certain 
local geometric conditions imposed on the simulated line (tangents at the nodal points, radii 
of curvature at the end points, etc.). For example, using Fusion 360 CAD tools, it is 
impossible to construct a curve which smoothly mates two given circles at the indicated 
mating. Meanwhile, for a set of parametrized cubic curves, this problem can have four 
solutions (see paragraph 5). 

Another approach is based on the use of a composite curve passing through the 
characteristic points of the simulated line and satisfying the specified smoothness conditions. 
Bezier [2, 3] or Hermite [4] cubic curves are most often used as segments of a composite 
curve. The choice of cubic curves is explained by the simplicity and clarity of their 
mathematical description combined with good "flexibility", sufficient for many practical 
applications. In particular, when using cubic Bezier segments with unit weight coefficients, 
the error in modeling the physical spline does not exceed 2% (see paragraph 6). 

The main problem in the formation of a composite curve is to ensure a given degree of 
smoothness. Let us assume that the simulated irregular curve has a degree of smoothness G2 
(continuous change in curvature). The riverbed, the trajectory of the aircraft, a flexible metal 
ruler, Euler elastics [5], and other natural curves have a smoothness of at least G2. Even the 
movement of a pencil on paper, as a body of non-zero mass, obeys Newton's second law, 
according to which a jump in the acceleration vector is possible only with an abrupt change in 
the driving force. In this case, they say that "the architect’s hand trembled”. 

Segments can be smoothly joined in various ways. In [3], to ensure a given degree of 
smoothness, the authors proposed to change the order of the connected segments, which 
leads to complication of the mathematical model. In [4], a simplified approach is used, when 
at the junction point the vectors of the first derivatives are assumed to coincide not only in 
direction, but also in modulus. At the same time, one degree of freedom is lost.  

The classical approach proposed by P. Bezier is based on connecting segments of the 
same order [2, p. 169]. In a monograph by A Foks [6, p. 152], a vector condition for a G2-
smooth connection of segments of a spatial cubic Bezier curve is obtained. We show that for 
the plane case this condition is reduced to the solution of an ordinary quadratic equation (see 
paragraph 3). 

The problem of forming a planar cubic Bezier segment with predetermined tangents and 
radii of curvature at both ends is also worth investigating and solving. In [6, p. 153] it is noted 
that in order to construct such a segment, it is necessary to solve an algebraic equation of the 
fourth degree. In this article we show that there is no need to solve the equation of the fourth 
degree, since the task is reduced to finding the intersection points of two parabolas (see 
paragraph 5). 

Scientific novelty. A graphoanalytic algorithm has been developed for the construction 
of a flat composite G2-smooth (everywhere twice differentiable) cubic Bezier curve passing 
through specified reference points and touching the specified straight lines at these points. A 
distinctive feature of the algorithm is to take into account the direction of tangent vectors and 
radii of curvature at the reference and end points of the curve being constructed. A software 
module has been developed to allow for interactive control of the shape of a composite curve 
(while maintaining the second order of smoothness at the junction points). 

The work is beneficial to the scientific community since the theory and practice of 
forming composite parametrized curves used in technical design since the mid-1960s is not 
sufficiently reflected in Russian scientific publications and textbooks on engineering and 
computer graphics [7, 8, 9]. 

Practical significance. The graphoanalytic algorithm proposed in the article allows for 
the construction of a G2-smooth composite cubic Bezier curve with specified tangents at the 



reference points, and specified tangents and specified radii of curvature at the end points. 
Such curves are used to model a variety of geometric objects and physical processes, in 
particular, to approximate irregular (graphically defined) curved lines.  

2. Problem statement 
An irregular curve passing through the reference points 0, 1, 2,..., n is fixed on the plane. 

Tangents τ0, τ1, τ2,…, τn are marked at the reference points. At the end points 0, n, the 
curvature K0, Kn is given. We need to construct a G2-smooth approximating function which 
passes through these points, touches these lines, and has a particular curvature at the end 
points. The permissible approximation error is determined by the constructor; as a rule, it 
should not exceed 1...2%. 

We shall compose the desired curve from segments of cubic curves in the Bezier shape. 
Any segment with the number i=1, 2, 3, …, n is completely defined by its characteristic 
polyline: the starting point i-1, the ending point I, and the control points Qi, Pi. For example, 
the first segment 0-1 is described by parametric Bezier equations: 
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where Q1(xQ1, yQ1), P1(xP1, yP1) are the control points, and points 0(x0, y0), 1(x1, y1) are the 
boundaries of the Bezier segment. The control points Q1, P1 are incident to the tangents τ0, τ1. 
The parameter t varies in the range t[0, 1]. The auxiliary Cartesian coordinate system xy on 
the drawing plane can be specified arbitrarily. The position of the control points is 
determined from the condition of continuity of curvature changes at the interface points of 
neighboring segments, as well as from the condition of providing a predetermined curvature 
at the boundary points 0, n. 

Solution. Let us fix the shape of a segment. Fixation is provided by specifying the 
characteristic polyline. The number of the fixed segment and its characteristic polyline is set 
by the constructor. Find the left and right segments smoothly connected to a fixed segment. 
On the left and right, attach new segments to the resulting segments, each time providing a 
condition of continuity of curvature at the points of contact. At the same time, we must 
repeatedly solve two local problems.  

Local Problem 1. Find the control points of a planar cubic Bezier segment 1-2 
smoothly connected to a fixed cubic Bezier segment 0-1. Segments 0-1 and 1-2 are coplanar. 
At the junction point 1, both segments must have a common tangent τ1 and a common radius 
of curvature. In addition, the segment 1-2 to be constructed must touch at its endpoint 2 a 
predetermined straight line τ2. 

The main difficulty is ensuring the continuity of curvature at the junction of segments. In 
case of parametrized cubic curves, the solution is reduced to finding the roots of a quadratic 
equation (see paragraph 3). 

We show that the local problem 1 has ∞1 solutions. The parametric equations of the cubic 
Bezier segment contain eight scalar coefficients. Therefore, the segment has eight degrees of 
freedom. The coordinates of the segment boundary points are fixed. The constructed segment 
has 4 degrees of freedom. The control points must be incident to the specified tangent. This 
requirement takes away two more degrees of freedom from the desired segment. The two 
remaining degrees of freedom allow the constructor to specify the radii of curvature at the 
start and end points of the segment. But in the condition of problem 1, the curvature is fixed 
only at the butt point 1, which absorbs only one degree of freedom. Consequently, the 
segment being constructed retains one degree of freedom. Thus, there are ∞1 Bezier segments 
satisfying the condition of problem 1, which allows for the shape of the segment to be 
controlled. 



Local Problem 2. Find the control points of a planar cubic Bezier segment with given 
tangents and radii of curvature at its end points. The problem can have 0, 2, or 4 solutions 
(see paragraph 5). If the signs of curvature are fixed at the end points, then the problem 
cannot have more than one solution.  

3. The condition of continuity of curvature at the interface 
point of Bezier segments  

Construction of a G2-smooth composite curve passing through these points and touching 
the given straight lines at these points begins with the fixation of a segment. We shall assume 
that the user has fixed the first segment 0-1 by presenting it as a parameterized curve r(1)(t). 
Here and further, the superscript in parentheses denotes the segment number. The second 
segment 1-2 must be attached to the first segment 0-1, ensuring that the curvature of the 
connected segments is equal at the butt point 1 and contact with the given straight lines τ1, τ2 
at points 1, 2. 

The curvature K of a parametrically given curve r(t) is determined by the expression 
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where B is the unit vector of the binormal. If a plane curve is considered, then vector B is 
located perpendicular to the plane of the drawing. 

It follows from (2) that the condition of equality of curvature of segments r(1)(t) and r(2)(t) 
at the junction point 1 has the form  
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We shall write the first derivatives as  
(1) (1) (2) (2)

1 1 1 1 1 1,w w= =r T r T , (4) 

where T1 is the general tangent vector, and the magnitudes 
(1) (2)

1 1,w w are the modules of 

the first derivatives at the junction point 1 (the subscript hereafter denotes the point number). 
Substituting expressions (4) into (3), we obtain the smoothness condition: 
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valid for any value of μ1 (both positive and negative). The variable parameter μ1 gives an 
additional degree of freedom in the system of constructing a G2-smooth curve. 

3.1. The smoothness condition in the Bezier form  
By writing the equation of segment 0-1 in the Ferguson form  
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and differentiating twice, we obtain an expression for calculating the second derivative at 
the end of the first segment (at t=1): 
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where (1) (1)

0 0 0 1 1 1,w w= =T r T r are derivatives of the first segment at its boundary points 0, 

1. 
Similarly, by writing the equation of the second segment 1-2 as  
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and differentiating twice, we obtain an expression for calculating the second derivative at 
the beginning of the second segment (at t=0): 
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where 
(2) (2)

1 1 1 2 2 2,w w= =T r T r  are vector derivatives of the second segment at boundary 

points 1, 2. 
Substituting expressions (7), (8) into (6), we obtain a condition for a smooth connection 

of segments 0-1 and 1-2: 
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where the designation 
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1 1 1/w w =  (the ratio of the modules of vector derivatives 1 
(1) (2)

1 1,r r  at jointing point) is introduced.  

For a smooth connection of segments, it is not necessary to ensure the continuity of 

changes in the modules of derivatives 
(1) (2)

1 1,r r  [6, p. 165]. The parameter λ1 can take any 

positive values.   
To write the smoothness condition (9) in the Bezier form, we take into account that the 

control points Q1, P1 of segment 0-1 and the vector derivatives 
(1) (1)

0 0 0 1 1 1,w w= =T r T r at the 

end points of this segment are connected by Bezier relations (Fig. 2): 
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where q1, p1 are vectors indicating the position of control points Q1, P1. Similarly, the 

control points Q2, P2 of the second segment and the derivatives 
(2) (2)

1 1 1 2 2 2,w w= =T r T r at the 

end points of this segment are related by the relations: 
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where q2, p2 are vectors indicating the position of the control points Q2, P2. 
 

 
Fig. 2. Connecting Bezier segments 

 
From (10) and (11) it follows: 

(1) (2)
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Substituting (12) into (9), we obtain a smoothness condition in which there is no vector r2 

indicating the position of the endpoint of the second segment, since the terms involving this 
vector are reduced to: 

2 2 2
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According to (12), the control vectors p1 and q2 are interrelated: 

2 1 1 1 1(1 ) = + −q r p  . (14) 

Substituting (14) into (13) (excluding vector q2), we obtain a condition for a smooth 
connection of segments 0-1 and 1-2 in the Bezier form: 
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Here r1 is a vector indicating the position of the abutting point 1, q1 and p1 are vectors 
indicating the position of the control points Q1, P1 of the first (fixed by the user) segment 0-1, 
p2 is a vector indicating the position of the control point P2 of the second (constructed) 
segment 1-2 (see Fig. 2). In condition (15) it is not required to specify either the position of 
the starting point 0 of the first segment or the position of the end point 2 of the second 
segment. 

Thus, if the vector p2 indicating the position of the control point P2 of the second segment 
satisfies condition (15), then, regardless of the position of points 0 and 2, segments 0-1 and 1-
2 will have the same curvature at the junction point (with fixed vectors r1, q1, p1 and 
arbitrarily specified values of parameters λ1 and μ1). The position of the control point Q2 
(vector q2), according to the relation (14), functionally depends only on λ1 (with fixed vectors 
r1 and p1). 

3.2. Solving Local Problem 1  
Consider condition (15) as a parametrically defined function describing the motion of the 

control point P2 on the drawing plane (depending on the parameters λ1 and μ1). Note that for 
a fixed parameter μ1, equation (15) describes a parabola along which point P2 moves. For 
different values of μ1, we obtain a family of parabolas. Any point P2 of any parabola satisfies 
the smoothness condition (15). 

According to the condition of the problem, we must find a point P2 incident to a 
predetermined tangent τ2 (see Fig. 2). The position of the point P2 running along the parabola 
(15) is determined (with fixed μ1 and fixed vectors r1, q1, p1) by the value of the parameter λ1. 
Therefore, it is necessary to find a value λ1 at which the point P2 falls on the tangent τ2. In 
other words, we must find the intersection points of the line τ2 and the parabola (15). 

By decomposing the vector equation (15) along the x, y coordinate axes and assigning an 
arbitrary value to the parameter μ1, we obtain the parametric equation of a parabola, where λ1 
plays the role of an independent parameter: 
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Here (x1, y1), (xQ1, yQ1), (xP1, yP1) are the coordinates of the junction point 1 and the control 
points Q1, P1 of the fixed segment 0-1. When changing the parameter μ1, we obtain a family of 
parabolas. 

The equation of the tangent τ2 passing through point 2(x2, y2) and inclined to the x axis at 
an angle δ2 has the form: 

2 2 2( )y tg x x y= − + .  

The control point P2 of the constructed segment 1-2 must be incident to the case τ2, 
therefore, the coordinates xP2, yP2 of the point P2 must satisfy the equation  

2 2 2 2 2( )P Py tg x x y= − + . (17) 



Fixing the parameter μ1 in equation (16) (selecting one parabola from the family of 
parabolas) and substituting (16) into (17), after algebraic transformations we obtain a 
quadratic equation with respect to λ1: 
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The value of λ1 found from (18) ensures that the smoothness condition (15) is fulfilled and 
that the point P2 belongs to the previously given tangent τ2. 

In contrast to the generalized smoothness condition (15), in which there is no information 
about the endpoint 2 of the constructed segment 1-2, nor about the tangent at point 2, all 
boundary conditions are included in equation (18). Therefore, the value of the parameter λ1, 
found from equation (18), allows us to calculate, according to (16), the coordinates of the 
control point P2τ2, which ensures smooth conjugation of segments. The coordinates of the 
other control point Q2τ1 of the segment being constructed are calculated using scalar 
formulas 
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equivalent to the vector equation (14). 
In equation (18) there are two functionally related variables λ1 and μ1. As noted earlier, 

the parameter μ1 can be set arbitrarily. Then from (18) we find the value of parameter λ1 as a 
function of parameter μ1: 

1 0 1

1

1

( )MD D 




−  −
= , (21) 

where 
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calculated according to (19). 
But it is possible to use a different approach: take the value λ1 as an independent variable, 

and assume the parameter μ1 to be functionally dependent on λ1. Then from (21) we obtain: 
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Obviously, equations (21) and (22) are equivalent. Arbitrarily setting the parameter μ1, we 
calculate, according to (21), the value of the parameter λ1; and vice versa, arbitrarily setting 
the parameter λ1, we calculate, according to (22), the value of the parameter μ1. Substituting 
the pair of μ1, λ1 into equations (16) and (20), we calculate the coordinates of the control 
points μ1, λ1 of the constructed segment 1-2. Local problem 1 has been solved. 

3.3. Software implementation  
An irregular (graphically defined) curve is presented on the computer screen. Points 0, 1, 

2, ... are marked on the curve and tangents are fixed at these points τ0, τ1, τ2, … We must find 
a composite cubic Bezier curve passing through these points and touching these lines. 
Following Bezier [2, p. 106], we shall call this an approximating curve, despite the fact that it 
must pass strictly through the specified points. 



Step 1. By moving the control points Q1, P1 along the tangents τ0, τ1 and drawing the 
Bezier segment (1) for each combination {Q1, P1}, we achieve a satisfactory coincidence of the 
Bezier segment with the section 0-1 of the graphically defined curve. 

Step 2. We arbitrarily set the parameter λ1, thereby fixing the control point Q2 on the 
case τ1 (see Fig. 2): 
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Using expressions (20), we calculate the coordinates of the control point Q2: 
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Note to Step 2. Instead of specifying the numeric value of the parameter λ1, the 
constructor can arbitrarily mark the control point Q2 on the tangent τ1, and then calculate λ1.  

Step 3. According to (22), we calculate parameter μ1: 
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Step 4. We calculate the coordinates of the control point P2τ2, the position of which, 
according to (16), functionally depends on λ1 and μ1:  
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Step 5. We calculate a two-dimensional array of points of the Bezier segment 1-2, setting 
the values of the parameter t in the range t[0, 1]: 
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Result: a Bezier segment passing through points 1, 2 and touching the lines τ1, τ2 at these 
points is obtained. At the junction point 1, the resulting segment has the same radius of 
curvature as segment 0-1 

If satisfactory accuracy of the approximation of section 1-2 is achieved, we proceed to 
modeling the next section. If the accuracy of the approximation does not satisfy the 
constructor, we change the position of the point Q2τ1 and repeat Steps 2...5. The dialogue 
continues until the specified accuracy of the approximation is reached in section 1-2. 

Note. By specifying different positions of the control point Q2τ1, we obtain ∞1 Bezier 
segments satisfying the condition of the local problem 1. This is due to the presence of the 
variable parameter μ1 in the smoothness condition (15). Neglecting this parameter leads to a 
loss of variability: for μ1=0, equation (15) has a unique solution (or has no solution). As a 
result, the ability to control the shape of the segment being constructed is lost.  

Example 1 (Bezier segment shape control). Let the cubic Bezier segment 0-1 be 
fixed by specifying the control points Q1, P1 on the tangents τ0, τ1 (Fig. 3).  We must find a 
cubic segment 1-2 that provides smoothness G2 at the butt point 1 and touching the straight 
line τ2 at its endpoint 2.  

 



 
Figure 3. Controlling the shape of a Bezier segment 

 
We assign a value to the parameter λ1, for example, λ1=4. Calculate the coordinates (20) of 

the control point Q2 of segment 1-2. We calculate the value (22) of the parameter μ1. Calculate 
the coordinates (16) of the control point P2 of segment 1-2. Result: a Bezier segment satisfying 
the specified boundary conditions is found. At the junction point 1, segments 0-1 and 1-2 have 
the same radius of curvature. 

Assigning different values to the parameter λ1 (λ1= 4.0, 4.2, 4.5), we obtain Bezier 
segments 1-2 of different shapes, but with the same curvature at the junction point 1 (see Fig. 
3). 

4. Properties of the cubic Bezier curve  
Write the equation of the Bezier curve AB in projections on the x, y axis: 
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Depending on the position of the point A BX  = and the control points ,A BQ P   , 

we obtain curves whose shape differs significantly (Fig. 4).  
 

 
Fig. 4. Types of cubic Bézier curves 

 
Additionally, we consider two special cases: 1) the tangents τA, τB at the end points of the 

segment AB are parallel to each other; 2) one of the control points (Q or P) coincides with the 

point X of the intersection of the tangents ( A BX  = ).  

Theorem 1. If the tangents τA, τB at the end points of the Bezier segment AB are parallel 
to each other, then the curvature of the segment at point A is determined only by the position 
of the control point QτA (it does not depend on the position of the control point PτB). 



Similarly, due to the symmetry of the Bezier segment, its curvature at point B does not 
depend on the position of the control point QτA; it is only determined by the position of 
point PτB. 

Proof. The curvature of segment (23) at its starting point A is calculated by the formula  
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A A A A
A
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K

x y

−
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+
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We must show that for τA||τB, the curvature of KA does not depend on the position of the 
point P(xP, yP). 

Differentiating (23) by the parameter t and substituting t=0, we obtain: 

3( ); 6( 2 )

3( ); 6( 2 )

A Q A A A Q P

A Q A A A Q P

x x x x x x x

y y y y y y y

= − = − +

= − = − +
 (25) 

According to (25), the denominator of expression (24) does not depend on the 
coordinates xP, yP of the control point P. It is sufficient to show that the numerator of this 
expression also does not depend on the coordinates of point P. Substituting (25) into (24) and 
performing some algebraic transformations, we obtain an expression for the numerator Ч 
(without taking into account the constant coefficient): 

( ) ( )P A Q P A Q A Q A QЧ x y y y x x x y y x= − − − + −  (26) 

The first two terms of this expression, containing the coordinates of the point P, are 
mutually reduced, since, due to the parallelism of the tangents, the equality 

/ ( ) / ( )P P Q A Q Ay x y y x x= − −  is true.  

Thus, neither the denominator nor the numerator of expression (24) depends on the 
coordinates of point P; the theorem is proved. In particular, Bezier segments r, rʹ, rʹʹ with a 
common control point Q and different control points P, pʹ, pʹʹ, despite their different shapes, 
have the same curvature at point A (Fig. 4, e). 

Theorem 2. If the vertices A, Q, P of the characteristic polyline AQPB of the Bezier 
segment are collinear, then, regardless of the position of point B, the curvature of segment AB 
at point A is zero (Fig. 5, left). Similarly, if the vertices B, Q, P are located collinearly, then, 
regardless of the position of point A, the curvature of the segment AB at point B is zero (Fig. 
5, right). 

Proof. Let points A, Q, P be collinear (incident to the tangent τA). The equation of the 

tangent τA has the form ( )A A Ay tg x x y= − + , therefore: 

( ) , ( )Q A Q A A P A P A Ay tg x x y y tg x x y = − + = − + .  

Substituting yQ, yP into (25), we find derivatives , , , .A A A Ax x y y  Substituting them into 

expression (24), we make sure that the numerator of this expression is zero; the second part 
of the theorem is thus proved.  

 

 
Fig. 5. For Theorem 2 

 
Corollary of Theorem 2. If the control points Q, P of characteristic polyline segment 

AQPB Beziers match, the curvature of the segment end points A, B is equal to zero (Fig. 4, f). 



The corollary of Theorem 2 allows for a G2-smooth composite curve to be designed with 
zero curvature in the junction points: it is only necessary to combine the control points of the 
segments with the points of intersection of tangents at the endpoints of these segments. 

 Example 2 (smooth conjugation of straight lines with cubic curves). We must 
draw a G2-smooth composite curve passing through the points 0, 1, 2, 3, which is touching the 
given straight lines τ0, τ1, τ2, τ3 (Fig. 6) at these points. We combine the control points P1, Q1 
of the first segment 0-1 with the point X1 = τ0∩τ1. Similarly, we combine the control points P2, 
Q2 of the second segment 1-2 with the point X2 = τ1∩τ2, and so on. We obtain a curve 
consisting of cubic Bezier segments with zero curvature at the junction points, the most 
tightly of all possible G2 curves adjacent to its characteristic polyline.  

 

 
Fig. 6. Composite curve with zero curvature at the butt points 

 
In conclusion of this section we note the "involutional" property of the cubic Bezier curve: 

when renaming the reference points A↔B and the control points Q↔P simultaneously, the 
shape of the Bezier segment AB does not change. This follows directly from the consideration 
of the structure of equation (23), taking into account the fact that for any value of t[0, 1], the 

Bernstein polynomial 
3 2 2 3(1 ) 3 (1 ) 3 (1 )t t t t t t− + − + − + is equal to one. 

5. Cubic Bezier segment with a given curvature at the end 
points (solution of Local Problem 2) 

Recall the condition of local problem 2 (see paragraph 2): construct a Bezier segment 0-1 
by specifying the directions of tangents τ0, τ1 and the curvature values K0, K1 at the end points 
0, 1. We shall look for a solution in the form (1): 

3 2 2 3

0 1

3 2 2 3

0 1

( ) (1 ) 3 (1 ) 3 (1 )

( ) (1 ) 3 (1 ) 3 (1 ) .

Q P

Q P

x t t x t t x t t x t x

y t t y t t y t t y t y

= − + − + − +

= − + − + − +
  

The control points Q(xQ, yQ), P(xP, yP) must be determined from the incident conditions Q
τ0, Pτ1 and from the conditions of equality of curvature at the ends of the segment to the 
values K0, K1. The curvature of a plane curve, given explicitly y =y(x), is calculated by the 
formula 

2 3/2(1 )

x

x

y
K

y


=

+
 (27) 

The values of 0 0( )xy d =  and 1 1( )xy d =  are known (equal to the tangents d0, d1 of the 

angles of inclination of the tangents τ0, τ1 to the x axis), so the values of the second derivatives 

0 0 1 1( ) , ( )x xy y  = =  at the end points of the segment being constructed can be found from 

(27). 
According to the known rules of differentiation of a complex function, we obtain: 



0 1
0 0 1 1

0 1

( ) , ( )x x

y y
d y d y

x x
 = = = =  , (28) 

0 0 0 0 1 1 1 1
0 0 1 13 3

0 1

( ) , ( )
( ) ( )

x x

x y x y x y x y
y y

x x
 

− −
 = = = = . (29) 

Substituting (28) into (29), we obtain: 
2 2

0 0 0 0 0 1 1 1 1 1,y d x x y d x x − = − =  . (30) 

We differentiate (1) by the parameter t:  

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

3( ), 3( ),

3( ), 3( ),

6( 2 ), 6( 2 ),

6( 2 ), 6( 2 ).

Q Q

P P

Q P Q P

Q P Q P

x x x y y y

x x x y y y

x x x x y y y y

x x x x y y y y

= − = −

= − = −

= − + = − +

= − + = − +

 (31) 

Substituting (31) into (30), we obtain: 
2

0 0 0 0 0

2

1 1 1 1 1

3 ( ) 2( 2 ) 2 ( 2 ),

3 ( ) 2( 2 ) 2 ( 2 ).

Q Q P Q P

P Q P Q P

x x y y y d x x x

x x y y y d x x x





− = − + − − +

− = − + − − +
 (32) 

Equations (32) include unknown quantities xQ, yQ, xP, yP. Given that Qτ0, Pτ1, we 
write: 

0 0 0 1 1 1( ), ( )Q Q P Py y d x x y y d x x− = − − = − . (33) 

Substituting (33) into (32), we exclude the unknowns yQ, yP. After algebraic 
transformations, we obtain a system of explicit equations with respect to the unknowns xP, xQ: 

2

1 0 0 0 0

2

0 1 1 1 1

2 ( ) 3 6 ,

2 ( ) 3 6 ,

P Q Q P

Q P P Q

x d d x x x

x d d x x x

  

  

− = − +

− = − +
 (34) 

where ψP, ψQ are constant coefficients: 
2

0 0 0 1 1 1 0 0

2

1 1 1 0 0 0 1 1

3 2( ) 2( ),

3 2( ) 2( ).

P

Q

x y y d x d x

x y y d x d x

 

 

= + − + −

= + − + −
  

Solving equations (34) with respect to xP, xQ and considering (33), we find the coordinates 
of the control points Q(xQ, yQ), P(xP, yP) of the Bezier segment with a given curvature K0, K1 at 
the end points. 

The nonlinear system of equations (34) can be solved graphically. Draw parabola xP=f(xQ) 
(the first equation) and parabola xQ=g(xP) (the second equation). At the intersection points of 
the parabolas f∩g, we obtain the values of the unknown xQ, xP. According to (33), we calculate 
the values of yQ, yP. The control points are determined. 

Note. Intersecting at four points, the parabolas give four solutions to the system of 
equations (34) (four variants of the characteristic polyline). All four variants induce Bezier 
segments with the same curvature modulus |K0| at the starting point of the segment, and the 
same curvature modulus |K1| at the end point. At the same time, only one option corresponds 
to the predetermined curvature sign at the ends of the segment being constructed. 

Example 3 (conjugation of two circles). We must construct a cubic Bezier curve 
smoothly connecting two given circles with radii RA, RB. The conjugation points A, B are 
indicated on the circles (Fig. 7). Having drawn, according to (34), the parabolas xP=f(xQ) and 
xQ=g(xP), we mark their intersection points 1, 2, 3, 4. We obtain four solutions of the system 
of equations (34). Each solution corresponds to a cubic Bezier segment with specified radii of 
curvature RA, RB at the boundary points A, B. Figure 7 shows the construction of control 



points Q1, P1 of the cubic segment No. 1 corresponding to point 1 of the intersection of 
parabolas.  

 

 
Fig. 7. Conjugation of two circles 

 
Example 4 (conjugation of a straight line and a circle). The direction TA of a 

straight line passing through point A is indicated. The point B is indicated on the circle RB 
(Fig. 8). It is required to construct a transition curve AB, smoothly (without curvature jumps) 
connecting a straight line and a circle. 

 

 
Figure 8. Conjugate a circle and a straight line 

 
The curvature of the transition curve at point A must be zero. Therefore, according to 

Theorem 2, the control point P of the desired curve must coincide with the intersection point 
of the directions TA, TB. Here TB is a vector touching the circle RB at point B. 

Substituting η0=ηA=0 into the first equation (34), we obtain a degenerate parabola 
xP=const. Substituting the calculated value of η1=|ηB| into the second equation (34), we 
obtain two parabolas xQ=F(xP) and xQ=Fʹ(xP). We mark the points U, Uʹ of the intersection of 
the parabolas with a straight line xP=const. We obtain characteristic polylines (A-Q-P-B) and 
(A-Qʹ-Pʹ-B), which correspond to Bezier segments No. 1 and No. 2. The task condition is 
satisfied by segment #1. 



Example 5 (closed G2 is a smooth contour). We must form a smooth, closed 
contour touching the sides of the square at points 0, 1, 2, 3. The radius of curvature is set at 
point 0. 

The problem has many solutions. Using a composite cubic Bezier curve, we can obtain 
both symmetric (Fig. 9, a, b) and asymmetric (Fig. 9, c, d) closed G2-smooth contours 
satisfying the conditions of the problem. When constructing the contours, algorithms for 
solving local problems 1 and 2 were used. 

 

 
Figure 9. Closed G2-smooth contour (options) 

6. Simulation of a physical spline (experiment) 
A physical spline is a line formed by the axis of an elastic rod passing through 

predetermined points. It is assumed that the dimensions of the cross-section of the rod are 
very small compared to the length and radius of curvature of its axis. An example of such a 
spline is an elastic metal ruler. Passing through points set on the plane, the ruler naturally 
acquires a shape with minimum energy of internal stresses and minimum average curvature. 
The theoretical equation of a physical spline can be found only under the condition of small 
deflections (small deviations from a straight line). In this case, the physical spline is 
satisfactorily described by a composite piecewise cubic polynomial curve of the second degree 
of smoothness [10]. For large deflections, the solution becomes fundamentally more 
complicated. According to [6], it reduces to a variational problem that has no elementary 
solution. Therefore, it is advisable to model a physical spline with large deflections 
experimentally, followed by approximation of the resulting curve.  

The simplest physical spline. A physical spline passes through points A, B, C (Fig. 10, 
left). A "three-point" spline with free ends can be called the simplest physical spline. We must 
find an analytical function that gives a satisfactory approximation to the elastic line of the 
simplest spline.  

The desired function must satisfy three groups of local conditions: incidence to the 
reference points A, B, C; tangency of the lines τA, τB, τC; and zero curvature at points A, C. The 
problem cannot be solved using a standard NURBS curve that does not account for the pre-
defined local geometric characteristics of the simulated line. Euler elastics are also 
inapplicable, since there is no axial force acting on the elastic element [5]. 

We shall look for a solution in the form of a composite G2-smooth cubic Bezier curve. We 
divide the elastic line into sections AB and BC, each of which is replaced by a cubic Bezier 
segment. To ensure zero curvature at point A, we combine the control point P1 of segment AB 
with the intersection point of tangents τA, τB (see Theorem 2). By moving the control point Q1 
along the tangent τA, we achieve the required accuracy of the approximation of the section 
AB. To ensure zero curvature at point C, we combine the control point Q2 with the 
intersection point of the tangents τB, τC (see Theorem 2). Calculate the value of the parameter 
λB (see paragraph 3.3): 



(2)

2

(1)

1

| |

| |

B
B

B

w B Q

w B P


−
= =

−
 .  

Through formula (22) we find the value of the parameter μ, at which the condition (18) of 
a smooth connection of the segments AB and DC is fulfilled. Substituting the found values λB 
and μ in (16), we obtain the coordinates of the control point P2. The control points of the BC 
segment are fully defined. The composite cubic curve AB+BC satisfies all boundary 
conditions. The approximation error does not exceed 1.5% (Fig. 10, right). 

 

 
 

Figure 10. The simplest physical spline: photo (left) and approximation (right) 
 
General physical spline. An elastic element with free ends passes through the 

reference points 0, 1, ..., 4. At the reference points we mark the tangents τ0, …, τ4 (Fig. 11, 
left). We must find a G2-smooth approximating function passing through points 0, 1, ..., 4 and 
touching the lines τ0, …, τ4. The curvature of the approximating function at the end points 0 
and 4 should be zero. Let us look for a solution in the form of a curve composed of four cubic 
Bezier segments. 

The first segment. The control point P1 of the first segment 0-1 is combined with the 
intersection point of the tangents τ0, τ1. Result: the curvature of segment 0-1 at the starting 
point is zero (see Theorem 2). By moving the control point Q1 along the tangent τ0, we achieve 
a satisfactory approximation of the first section of the physical spline.  

The second segment. Specifying the control point Q2τ1, we find the control point P2
τ2. The position of point P2 functionally depends on the position of point Q2 (see paragraph 
3.3). By moving the point Q2 along the tangent τ1, we achieve a satisfactory approximation of 
the second section of the physical spline.  

The third segment. Specifying the control point Q3τ2, we find the control point P3
τ3. The position of point P3 functionally depends on the position of point Q3. By moving the 
point Q3 along the tangent τ2, we achieve a satisfactory approximation of the third section of 
the physical spline.  

The fourth segment. We combine the control point Q4 with the intersection point of 
the tangents τ3, τ4. Result: the curvature of the Bezier segment 3-4 at the endpoint 4 is zero 
(see Theorem 2). The curvature at the ends of the fourth segment is fixed, so its shape cannot 
be controlled (see paragraph 5). Nevertheless, the Bezier segment 3-4 satisfactorily 
approximates the fourth section of the physical spline. The approximation error is less than 
2% (Fig. 11, right). 

 



 
 

Figure 11. General view physical spline approximation (photo and drawing) 

7. Conclusion 
Flat, graphically defined irregular curves are found in various engineering problems. To 

use such a curve in the design process, it must be approximated with the necessary accuracy 
through a relatively simple analytical function (or a set of such functions interconnected with 
a certain degree of smoothness). A compromise between accuracy and simplicity of 
mathematical description can be achieved through the use of composite cubic Bezier curves. 
The practical application of such curves is complicated by the absence in the technical 
literature of algorithms for calculating the coordinates of the control points of Bezier 
segments which account for the pre-set local characteristics of the curve being constructed 
(such as tangents and curvature at the nodal and end points).   

The article proposes an algebraic algorithm (paragraph 3.2, Local problem 1) and a 
program module (paragraph 3.3, software implementation) that can be used to determine the 
coordinates of the control points of the connected Bezier segments and control the shape of 
the segments without disturbing the order of smoothness G2 at the junction points. It is 
shown that the solution of the smooth docking problem reduces to the solution of the 
quadratic equation (18). 

A graphoanalytic algorithm for constructing a planar cubic Bezier segment given by the 
values of the first and second derivatives at the ends of the segment (paragraph 5, Local 
problem 2) is compiled. The search for control points of such a segment is reduced to solving 
a system of two quadratic equations (34) or to determining the coordinates of the intersection 
points of two drawn parabolas. The developed algorithms are used to approximate the 
experimentally obtained physical spline. The approximation error was less than 2% 
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